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Foreword

The flirst seven sections of this report contain brief, but
technical descriptions of research on numerical fluld mechanics
that has been carried out at Brown University under contract
with the Army Research Offlce. More detailed descriptions of
parts of that research are provided in six appendices.

The sections, except Section 8, are arranged in chronological
order according to when we began work on the various problems.
{ ‘ ~ At the start, three and a half years ago, the finite fluid
element method (Sectlion 1) was the only one under consideration.
Things went badly with that method, and progress with its
implementatlion went far more slowly than we ever anticipated.
As a result, by the end of the first year, a second method, which
originally was developed for a check on results of the first,
had become by far the more promising of the two. Most of thils
report (Sections 3-6) describes progress we have made with the
application of blased differences (Section 2) to a varlety of
fairly difficult problems of numerical fluld mechanics. Finally,
in the last six months of the period covered by this report,
the major difficulties with finite fluld elements were overcome,
so 1t became possible to begin a comparison of the two methods
(Section 6). Preliminary indlcations are that both methods are 7
reliable, and both are considerably more efficlent than a third
method with which they have been compared.

Section 7 1s a report of progress with a boundary integral
method that 1is not closely related to the others except by being
numerical, and Section 8 is a description of the kinds of graphical
software we had to develop for interpretation of our numerical
computations.

The research reported here has been carried out by F. E. Bisshopp,
R. B. Caswell (principal investigators), E. W. Fleri, M. E. Michaud,
and T. G. McKee (research assistants in Applied Mathematics).
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1. Finite fluld elements.

As initially formulated, the finite fluld element method dealt
with localized distributions of mass, momentum and energy. The
mass density and momentum density of a fluid were represented as

N
O(Z;t) ~ § mi(t)fi(-{ - Ki(t))

N L
pU(_J_(_,t) ~ % mi'xifi(!- - Zi)

with distribution functions in n =1, ? or 3 dimensions.
2,2
1 [x-X| /bi
fy= TREG e

The equations of fluid mechanlcs were then used, along with least
square fitting of ti.e appruzimations, to obtaln ordinary differential
equations for the fluid element parameters mi(t), Ki(t) and Oi(t)‘
A detailed description of the method is included in appendix A:
here we will report on two major difficulties and what has been
developed to overcome them.

In the course of our attempts to implement a finite fluld element
method we found first that the orlglnal formulation was simply too
complicated to be of practical value -- 1t was never successfully
employed for a two-~dimensional flow., Instead, two-dimensional
flow has been treated by an algorithm that is based upon the
original one, but is greatly simplifled as follows:

Simulation of the equation of continulty has been dropped in
favor of fixed particle masses, thus bringing the method
somewhat nearer to a particle-in-cell method. The basic
approximation is

N
D(Z_;t) ~ % mifi,(l - X’i(t))
where the integral of fi over all of 1, 2 or 3-dimensional space 1is

<f1) = 1.




The mass density at the center of the 1th element is assigned
the (approximate) value
N

Lpf,>= % m.i<fifl1> =0y

where n

. (X441 %70 540 %)
Vo= e : :
J (n(of+0§))n/2

<fif

and the parameters oy that characterzﬁe element diameters are
adjusted to give an overlap of the 1 element with 2, 6 or 17
nelghbors in 1, 2 or 3 dimensions. Some indication of ways to
assign the o's is given 1n appendix A, and further investigation
of the effect of that choice on accuracy of the method 1is still
in progress.

Motlon of the centers of the elements is governed by the
approximation of the fluid moementum equation,

for viscous flow, or
pi')—(i = Di_&(_)ﬂi) = ('Yp)i = U(_)Si)_)_(_i

for flow in a porous medium. The body force 5(1) has presented
no difficulty, and, for a barotropic fluid, 1t has been found
that an adequate approximation of the pressure gradient is

(zp)y = p'(p)(¥ o)y
where
‘ N
(_Yp)i = g mJ_V <f1fJ>
N m
= -—lJ— - ~
? 12 ?4-02 ()(1 Z1)<f‘1fj/

. e e g wE T e—— o




A second difficulty with the initial formulation was found in
the attempt to approximate the effect of viscous stress The
quadratic fitting of velnclties outlined in appendlx A gave a
rather poor estimate of the second gradients that appear in a
direct evaluation of (V'r)i. It has been found now that a
much better representation of viscous effects can be obtalned
in terms of two estimates of first gradients. 1In the simplifiled
algorithm for viscous flow there 1s a viscous stress fleld

N
T(_{,t) -~ ]2-: tifi(l - Xi(t)) ’

and 1ts divergence is approximated, similarly to Vp , as

N (X,-X,)-t
(1), =2} —g—i—e—i<f1fj7 .
1 oy + oJ

The coefficlents ti are defined implicitly by approximate values
of the stress field as
N

z tj <f1fJ>

Ty

where
= Ao N Zu)y T + ulp)((Tu)y+ (Y u)y

and (Y u), is the outer product

N (X,-X;) .
(u)y =2 J—I=% %, <oyr >

Investigation of performance of the 1 and 2-dimensional versions
of the simplified algorithm is still in progress. Results on sound
waves and shock waves will appear in the Ph.D. dissertalon of
E. W. Fleri, and he is scheduled to present a poster session on
the subject at the SIAM Meeting, Alexandria, Va., 5-7 June 1980.




2. Blased differences.

The method of blased differences was originally formulated and
developed as a standby -- it was to be used for independent
checks of results of the finite fluld element method. As it
turned out, however, very few problems with it were encountered,
and its present state of development 1s considerably advanced
beyond that of the finite fluid element method. It has been
applied, with promising results, to relatively difficult problems
of 2 and 3-dimensional unsteady flow. In this section, we give
a detalled description of the application of the method to the
simple problem of Burgers' equation 1n one dimension.

Given

Up +uu, = v,
the left-hand-side is a material derivative, 1.e. the total
time derivative along a particle path defined by X = u(x(t),t),
and the mixed Eulerian-Lagrangian formulation of the Burgers'
egquation 1s
X =u
4= wu

xx

By contrast with finite fluld elements that move along particle
paths, bilased differences are defined on a grld that is fixed
in space and has the local skeleton,

////// T

t —u u u
E /C r
t-k-———Iz uc Vc vr
xc—h xb xc+h

There are s<everal possibilities for defining the bias line
(approximate particle path in this case) and performing the
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time 1ntegration to various orders of accuracy. By experiment

it has been found that the following relatively simple, low order
scheme gives quite reliable results,

1) u, 1s taken to be the linear interpolation of v,(or v )

and Ve at a point Xq

_ (x -xp) (x.-x)
“c="’c——°rg—+\',e——°r°— (v, > 0)
_ (x'—§ ) (x -x.)
u, = v, ——!ﬁ~£— + v, —_EF—S-' (vc < 0)

?2) The bias line is defined by the forward difference
X, = ;c + kﬁc, and elimination of xc_;c glves

Ve

rR— (v
1 - F(VC—V£)

0)

|v

Ve

c k
1+ F(vr—vc)

0)

| A

3) The equation for u is approximated by a backward difference
in time and a central difference 1n space to glve

u, - Eg(uz +u, - eu)=u

c Cc

The low order integration scheme has a local truncation error
of O(kg) in 1ts time integrations, but 1t has not been found
necessary to improve that by introduction of central differences.
An indication of how the combined forward and backward differences
behave like central differences 1s given in appendix B.

S e ey ]
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3. Two-dimensional unsteady flow

Introduction of body forces and application of biased differences
to 2 and 3-dimensional versions of Burgers' equation is straight-
forward and will not be discussed here. We turn now to the more
difficult problems of 1lncompressible fluid mechanics. In mixed
Eulerian-Lagrangian form the equations of motion are

[><
i
=

I

Ie
[]
(@]

where f 1s a specified body force, n is p/p , and v is the
kinematic viscosity.

As in the one-dimensional example, the grid is fixed 1n space,
u, refers to a central node at time t, v, refers to the same node
at time t-k, Xe is the position of a node, and X is the position
at time t-k of the blas line that passes through Xq at time ¢t.

The local skeleton (1n plan views) is

u, n
u, u, oy, Ly Yo Y
u
u —C
=S (time t) Vs (time t-% )

The forward difference approximaticn,

X, = X, + k_c

and linear interpolation for Ec now gives simultaneous linear
equations for the two (or three) components of Ec. The equations
depend upon which gquadrant (or octant) contains ZC and that is
decided by the signs of the components of V.- If both components
of ¥, are positive, for example, Zc is in the third guadrant and,
with subscripts 1 and 2 to denote components of u and v ,

EERRE A ™ FUEA T NEUURN
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k — k -
@+ ﬂ(vlc - Vle))ulc +Tx(vlc - Vls)uec = Vie

K = _
+(1+ E(VQC - v?s))UQc = Voo

k —
E(Vec v2e)ulc

This gives initial values, E, for the integration of the momentum
equation.

To find the veloclty field, the momentum equation, is = first
approximated by a backward time difference with no space differences
included yet:

U, = u, + k(f(x,) - (Im), + v(au),) .

Then the central difference approximation of
gives the pressure equation,

1ru+1r.s+1re+1rw

With values of 5 determined by approximate solution of the Poisson
equatlon, central space differences in the time-integrated momentum
equation finally give

VK
w20

+ u

Yie 1s + u1e uulc)

krl(lc) +

vk

he(uen tUsg t Ug, bu

20)

(x0) -
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In practice, it has been found that the implicit equations

for m and u at the nodes can be treated quite efficiently by

iterations, with starting values obtained from data at time t-k.
There remains, as always, the treatment of boundary conditions.

So far, only rectangular geometries with boundaries parallel to

a coordinate axis have been consldered. At a southern boundary,

for example, with x, on the boundary V-u = O implies

2
up(*10s Xpo +¥) ~ up (y/h)

and
2
. =sV}
»Au? ~ 5 Upgp -
. h
At y = 3h the normal component of the momentum equation then
gives the pressure boundary condition,

- . ey 1
Te = Ty ~ %h(fQ(IJQ + fE(Z-c)) h Yz tux

This too is implicit, and lteratlion has proved effectilve.

Appendix C 1is a description of an application of the method
to flow in a channel. The results obtained there compared
very well with results obtained by a far more elaborate finite
element method.
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4, Thermal convection

At this time the only three-dimensional unsteady flow that has
been simulated 1s thermal convection. The Boussinesqg approxima-
tion for nearly incompressible fluids (i.e. liquids) is governed

by

X-u

é=-_Y1r— T - <TD)g + v

'i‘=n<AT+<l>

Ju =0

] where

™ is %— +V eemmeee—- nearly constant density
o

g is - VvV -- gravitational force and potentlal

o 1s the coefficient of thermal expansion

{T> 1s the average temperature

v 18 the klnematlc viscosity

k 1s the thermal diffusivity

the viscous dissipation, ¢ , is usually negligible.

In essence, the approximation 1s derived by neglecting
compressibility everywhere but in the part of buoyancy that 1s
not derivable from a potential

The blased difference scheme for these problems 1s a forward
difference of i = u to define a blas line followed by backward
differences for the momentum and energy equations, and again r

e e 1
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there is a Polsson equation for the pressure. Since initial
data Ec and Tc 18 used, it 18 preferable to solve the forward
difference equations for x, - X, instead of u . With directions
relative to central nodes defined as

the equations for displacements when the components of v, are
all positive are

k

- k - k -
(1 + 2vyemvy ey + vy omvyg)sp + flvyovyg)8s = kv

1c
k k k - =
hlVoe Vo) 8y + (1 + fvo,-vog))8, + flvg mvag)ég = kv,

kv

K h k
F(V3c-v3w)61 + E(v3c-v3s)62 + (1 + F(V3c-v3d))63 3¢
where 3§ 1is lc"zc' S8imilar sets of equations define § in the

other octants.
Given § as above, the initial data for the backward differences

is

U =¥, - (v )w - (Ye¥e)y - (em¥ghy
— 81 ) 63
To = Te - (Tc'Tw)7T - (Tc-Ts)TT - (Tc°Td)TT

and the backward egquations are:
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- kk - = T
T, h?(Te+Tw+Tn+Ts+Tu+Td 6Tc)‘Tc

- vk -
Bc ?(Be + .‘.l.w + En + 28 + Eu + l‘l.d 620)
= u,+klEr), - «gl(T, - <D)]
) -
" (Tg #+ My +T  + T 4T T, - 61rc) = (v g)c - “(E‘VLT)C.

Some results on thermal iInstability of a fluid heated from
below (the Bénard problem) are given in appendix D.

e ————————— P~ . N+
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5. Two phase flow

A considerable effort was devcted to the formulation of 3
biased difference algorithm for flow of two immiscible 1liquids
in a porous medium. In 1ts full generality the problem there
1s rather complicated, but there 1is nothing in its structure
that precludes an application of the method to it. For the most
part, however, we have concentrated on a simplified version
where the sum of the volumetric flow rates of the 'wetting' and
'nonwetting' phases

1s specifled in advance to be an irrotational, Iincompressible
flow fleld. Then the ratio of the proportions of void volume
filled by the phases (saturation)

s(_)_(_.vt) = vw/(vn + VW)

is governed by the saturation equation,

%% + F'(s)u-vs = v-49(s)ys.

In this case the forward difference for the blas line,

=T, 4 kF(8(X,))T, -
is not s0 easily solved as before because the derlvative of the
fractional flow rate, F'(8), is not a linear function of 8. In

fact,

' ~ SQ’SL
Fi(s) - (82+ (1-3)2)é

is more typical of the kind of problems encountered in waterflooding
of 011 producing reservoirs.

T e —— . % T . ©
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The case where F'(s) is given as above and & 18 constant has
been investigated in detall by Marion C Michauvd in her Ph D
dissertation. The dissertation 1s included here as appendix
E: a shorter version for publication 1s being prepared
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€. Compressible flow

A start has been made on the application of biased differences
to compressible flow, In the simple barotroolc case

=p?
X-u
p=- o0l
u = -2% +%Z’u(Zg+ZET-§Z'g I).

Comparisons of results in the one dimensional case have been
made between the finite fluld element method, a biased central
difference algorithm, and the blased forward-backward difference
algorithm.

The central difference algorithm 1is

- v 1. (R
X, = X, + 2k(pc + pc)

(1 - 3k(wa),
L

[

b £ -uy))

— _ (e,-0p)
[@, - $k((T6), + —52 )

o
il

+ dok((30), + hig-(ug+ur>)1/(1 + ;%)

where bars denote linear interpolation at YC. Iteration 1s carried
out on all three equations in the sequence indicated above.
The much simpler forward-backward algorlithm 1is

o Fc/(l + %%(ur—uz))

c

u= [, - (o -py) + ;&‘gwrwzn/(l + ﬁ%‘-)




in which only the last two equatlons are iterated.

The forward-backward finite fluld element method that was
used 1is

my = 1
Xy = ?1 + kﬁi
ci = ¢ 2'(xj - xi)2 (2 neighbors)
py = 1<t rj7 (1 and 2 neighbors)
-X
(Vp)i =27 ——i—§i—~<f f > (2 neighbors)
(X,-Xy)
(Vu), = 2§ —-1—2—- uy <E 0 (2 neighbors)
ty <r1r1> = (Vu)1 - Z'tJ<fifJ> ( |
X,.-X
o= 2uk J 1
uy = uy 2k(Vp)i+ > 1! .7 cJ <f1fj>
J71

in which the last three equations are lterated.

In simulations of one-dimensional sound and shock waves, all
three methods worked well; and we were led to conclude that
central time dilferences glve no significant improvements over
the simpler methods. Computation times for the forward-backward
bilased difference and finite fluid element methods were comparable
and significantly shorter than corresponding times for central
differences,

This work will appear in a Ph.D. dissertation by E. W. Fleri
(in preparation), and the two-dimensional version of the finite
fluid element method will also appear there.

= n AR, MR L T

)
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7. Vortex motion

In some problems of fluid mechanics, there 1s a boundary
integral method that can be used to formulate efficient numerical
methods. A particular example is the flow induced by a two-
dimensional region of constant vorticity, 1.e.

xSy - in R bounded by C
=0 outside R

The solution of this problem for which u — 0 as |x] >« 1s

u(X, Y6 ) = 4= f—L'—Xﬁ dxdy
R Ix - X|
v(X,Y,6) = - & L —,l‘—‘-i—lz dxdy
x -

and this, in turn, can be transformed to the line integral
2n

u(X,t) = - 55 4 In)x - X|dx .

For two-dimensional, incompressible flow w/dt = O on particle
paths, so the motion of the boundary of R 1s governed by

X =- —2—% In|x - X|a(x-X) , X on C.

The shift of the lntegration varlable from x to x-X removes the
logarithmic singularity, for after an integration by parts on
the closed curve,

é (x - X)(x - X)-dx . |

X =
= 2n C |l"£|2
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The normal component of the velocity of the boundary point X is

i - g ]

A .
and the contribution to N-X at x=X is zero.
There are a number of ways to perform the numerical integration:
the one we have set up fits a periodic, cubic spline to the

curve x(6), i.e.

N 4
_JS_( 8) = ; _0‘131( 8) + O(h )

where By 1s the cubic B-spline and h is [x; - %;,,|. The
derivative

N 3
dx = } ayBj(6)dé +0(h-de)

glves the tangent vector, the normal is obtained by rotation,
and the normal component of i is calculated in a consistent
approximation by Simpson's rule.

With one 1lteration of central differences for the time
integration (Huen's method) the algorithm performs well, but
we are not yet catisfied with 1t. Further work on this subject

is planned.
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8. Graphics

Visualization of two and three dimensional flows creates
speclal problems and a need for special software that isn't
generally found in standard packages. Graphics functions we
developed for our own purposes include:

1) Standard plotting of rough graphs at a terminal or
better quality graphs on an X-Y plotter

2) Rough representation of direction fields and contour
maps at a terminal.

3) Contour maps on X-Y plotters.

4) The linear algebra (affine transformations and
catenations) of two-dimensional directed arcs.

5) The linear algebra of space curves, including orthographic
and stereographlc projections and binocular pairs of
projections.

Item 4) was of such a general utility that 1t has now been
included 1n the public APL software library at Brown Unlversity.
Items 3) and 5) will probably be included in the public domain,
as well, but in any case, listings of any of our graphics
software functicons are avalilable on request.

The most challenging graphics problem was the generation of
contour maps. By comparison with other contour map algorithms
we have seen, our approach 1s somewhat different, and it appears
to be considerably more efficient. A description of the contour
map algorithm is included here in appendix F.
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Appendix A

Abstract
This paper contains the formulation of a numerical method

to treat one, two or three dimensional unsteady flow. The

method 1s closely related to the PIC method and finite element

methods. The elements (finite fluid elements) are localized

distributions of mass, characterized by mass, radius and position

in space. They move according to interactions between neighboring

elements that are derived from the fluid equations. Rough

estimates of the dependence of the accuracy of the approximation

on particle radii and the number of neighbors retained are

calculated.

A R L e e
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1. Introduction

This paper is devoted to the formulation of a numerical method
to treat one, two, or three-dimensional unsteady flow of a
barotropic, Stokes fluid. The generali_ation of the method to
treat an arbitrary compressible fluld will be deferred until the
present model has been implemented, and its worth as a practical
algorithm, appraised.

The method to be developed here is closely related to the
PIC method (Particle In Cell, Refs. 1-3), but in fact, the
two essential features of that method will both be treated somewhat
differently. The particles will not be treated as point-masses;
instead they will be taken to be localized distributions of mass
of finite extent, and as we shall see, they will be allowed to
overlap. The addition of another parameter, an effective radius,
for each particle allows another degree of freedom for optimiza-
tion, and thus an inherently more accurate representation of a
continuous density field by a finite set of localized particles.
The equations of motion of the particles are derived directly
from the equations of fluid mechanics, and the constitutive
relations of the fluid are modelled by providing appropriate
interactions between particles. Here, as in the PIC method,
closure of the dynamical system of particle motions 1s effected by
fitting mass and momentum density fields to provide a continuum
apﬁroximation of the motion of the particles. The system is
then closed by adopting the constitutive relations of the fluid
that is to be described. Instead of the fixed cells of the PIC

method, cells that move with the particles will be employed.
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Mass and momentum density in the neighborhood of each particle
will be defined by weighted averages, over the particle and its
neighbors, of the correspondingparticle attributes. This means
that the implementation of the method for two- and three-dimensional
flows will require the tabulation of a continually updated 1list of
the near neighbors of each particle. It does not appear that this
i1s a burden, however, since the major contribution to the weighted
averages comes from the six or twelve nearest neighbors in two or
three dimensions, respectively, and the updating can easily be
accomplished by periodically checking the positions of second
neighbors, which are easily assembled from the neighbors' neighbors.
The method is also closely related to the finite element
methods that have been used in continuum mechanics (Refs. 4,5).
However, two departures from the uvsual scheme of things will be
introduced: 1In the first place; the contiguous, nonoverlapping
elements, typically triangles or quadrilaterals in two dimensions
and tetrahzdra and various prisms in three, will be abandoned in
favor of simpler elements, the finite rarticles, that fill space
in an additive way rather than by mutual exclusion; 1.e. they
overlap. Thus the element parameters, nodal values, coefficlents
of shape functions, etc., are replaced by particle attributes and,
as we shall see, cell attributes. The basic similarity between this
and other finite element methods 1s in the determination of the
pafticle and cell atitributes by Galerkin's method where the
integrated square of the error of the finite approximation is

minimized.

C e ear WRAA VAT €6




A3 1

The second departure from other finite
element methods is that this one is entirely a Lagrangian
formulation: the veloclity of each particle is among the attributes
to be defined by minimization of the error of the approximation.
The velocities are then to be integrated to find the positions of
the particles, thus giving a formulation that closely mimics the
fluid elements on which fluid mechanics is founded.

With the overlapping of particles and the use of Galerkin's
method to govern the coefficients of an additive covering of space,
the present method bears at least a superficial resemblance to
spectral methods that have been used in numerical fluid mechanics
(Ref. 6). In the spectral methods the 'elements'
are trigonometric functions and/or members of various sets of
orthogonal polynomlals, none of which are localized in space.

The entity that corresponds to an inner product (here denoted by
<fift>) is the integral over all space of the product of the ith
and Jth mass distributions. The normalization is different,
however; it 1is <fi> = 1 here. The matrix <fifj> changes with time,
and even the location of the largest off-diagonal elements changes
in a shear flow; thus its inversion has to be done numerically.
Because of the localization of the particles, however, the major
off-diagonal contributions to the ith row come from relatively few

h

near neighbors of the it particle.
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2. Fluid Equations

The fluid model, a barotropic, Stokes fluid includes some

features of compressible flow., Specifically, the gradient of

the pressure is retained in the momentum equation, but the
thermodynamics is simplified by taking the pressure to be a
function of density alone. The Stokes approximation defines stress
in terms of a single viscosity coefficient, also a function of
density, and the theory is closed without the need for an energy
equation. Enough of the complexity of a compressible fluld is
retailned, so that the complementary functions of the particles

and the cells in the finite fluid element model can be fully
appreciated.

The equations that have a tensorial character will be given
twice, first in the cartesian tensor notation and then in an
abbreviated notation that will be used in later sections where
the subscripts will denote particle and/or cell number. The
cartesian tensor subscripts take on one, two or three values in
as many space dimensions, summation over repeated indices is

implied, and 611 1s one 1f 1=j, zero otherwise.

u

Conservation of mass:

w|

9 -
g + 3;; (puJ) = 0

(1)

O¢ + Ve (pu) = 0

- v ————t v s
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Momentum:

3 3 _ 3
3T (pu,) + W (pujui) = pgy *+ a—xj- 941

(2)

(pu)t + V'(puu) = pg + V'o

where g 1s a prescribed external force per unit mass, and the
stress (with Stokes' approximation) is

au au au
= y(—21 4 _J _ 2 'k -
44 u(axJ M 3(axk)513) Pdy

(3)

o =2uVu -(p + % uv-ou)I.

Finally, for the barotropic model: i

|
p = B5(p) i
() |

u = u(p)

where the functions, p and ﬁ, are prescribed.




3. Particle attributes

Just as in other finite element methods, the individual
elements, particles in this case, can be assigned an arbitrarily
complex internal structure. This leads to the usual trade-off:
the accuracy of the approximation can be improved either by
increasing the number of elements per unit volume or by augmenting
the internal complexity of the elements. The cholce 1is by no
means a trivial one, for though the more complex elements
necessitate more equations to govern the values of their several
attributes, the greater separation of elements tends to allow
larger time-lincrements in the numerical integration of the
dynamical system. The question of improvement of the approxima-
tion will be deferred here, and the particles will be assigned a
relatively simple internal structure.

The particle approximation consists in the replacement of the
density field, p(x,t), by a set of N localized distributions of

mass, i.e.
(1) p ~ Imy(£)f, (x,t)

where the sum 1is from i=1 to N. The identification of m1 as the

h

total mass of the 1t particle 1s effected by the conditions on

the distribution functions,

(2). <fy> =1 i=1,...N,

where the angular brackets denote the integral over all space.




AT

Since the distribution functions represent the location of mass

h

within the particles, the location of the it particle is the

mean value,
(3) Xi(t) = <Xfi>,

and the effective radius of the 1th particle 1is defined in terms

of the variance as

2, ,1/2

(4) ri(t) = <|x-x;1°f,

If the attributes, mass, position and effective radius, are
accepted as a sufficient description of the particles, then a
particularly convenient choice of distribution functions is the

normal distribution,

2, .2
—lx-Xil /0]

1
(5) f,(x,t)
g\ X (""i)n 7 €

where the value of n is 1, 2 or 3 in n space dimensions, and
_ /2
(6) o, () = /2 ¢, (v).

It may be noted that the first few moments, eqs.(2,3,4), are far
from sufficient information to determine the distribution functions;
the arbltrary and convenient choice of normal distributions relates
higher moments to the radius in ways that are particularly easy to
evgluate. A greater convenience, however, is the ease with which
several kinds of matrix elements that will be introduced in due

course can be evaluated explicitly. Thus, for exampleX

See Sec. 6, Matrix elements.

R - ar— - -
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-]X,-X |2/(02+02)
1 17 173
(7) <f . f.> = e

1 (ﬂ(of+c§))n;2

With the normal distributions, eq.(5), the mass of the ith

particle is distributed symmetrically about Xi(t), and the
approximation to the fluid momentum field that 1s consistent
with eq.(1) 1is,

(8) pu ~ Emixif‘i

where u(x,t) is the fluid velocity field. Clearly, Xi and ki
cannot be specified independently, so to preserve the character
of the 1nitial value problem for the fluid, the parameters,

my and ki are chosen to minimize the error of the approxima-

tions of eqgs.(l1 & 8). For the particle approximation the error

will be taken to be the unbiased r.m.s. error,

2,1/2

b

-1 2,1 :
(9) E = o7 <(p-Imyf )< + 2 lpu—ZmiXifi|
*

where Uy 1s a characteristic fluid velocity that has been intro-
duced to render eq.(9) dimensionally consistent, p, is a character-
istic fluid density, and [E2] is volume. The choice of eq.(9)
is somewhat of a compromise, for though an unbiased relative error,
e.g.

(D-Xmif‘l)2 Ipu—)lmi).(if‘ll2

(10) < = + > >
p” | pu]

s

might provide a better representation of the fields, the theory

that follows therefrom is much more difficult.
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The conditions to minimize E are:

EE— = - < > 4+ —% k . _E— =
02U2EIE .
Y- "2 _ = < > - L X <f.f,> = 0
(12) my ak DUfi mj j 1T
i
p2E aE 1 . .
* = - £ X, < ~Im,X,f,)> =0
(13) —— 30 <fq (p ijfj)> + = X fq (pu mX, J)
1 9% 1 Ug 1
where
2
of no
_ My o2 2 "%
(1) f = 3. = 53 (Ix=Xy| 5 )Ty
i i Ui

Note that eq.(12) implies the vanishing of the corresponding term
of eq.(11), and egs.(11l and 12) allow the replacement of f01 by
|x-Xi|2fi in eq.(13).

Now it may be noted that if the conditions of equation (13)
are retained, the result is a theory in which the o's are large,
the particles' are not localized, and near and far neighbors are
of equal importance in equations (11) and (12). Accordingly,
equation (13) will be drOppéd altogether, and in §7 estimates will
be given for choices of o's that minimize the error of truncated.

approximations.
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4, Particle dynamics

Consider first eqs.(3.11,3.12):

(1) Imy<fyfy> = <pfy>

(2) szxJ<fifJ> = <pufi>

In the description of unsteady flow, the parameters, my ki

and 0;, are to vary with time, but in such manner that eqgs.(1,2)
are preserved. Equations (1,2) can thus be regarded as constraints
on the particle dynamlics; to see their effects, it suffices to

differentiate them to obtain
(3) (ij<fifj>) = <pf1> = <pfi+fipt>

>) = <puf,> = <pufy+f, (pu), >

(%) (Im, X, <f .

RS RS

The subscript, i, runs from 1 to N in eqgs.(3,4), which can be
thought of as the mass and momentum transport laws of the particle
dynamics. The right-hand sides of eqs.(3,4) contain both particle
attributes and the fluild density and momentum fields; they are the
particle interactlons that are to be determined presently by the
introduction of cells.

From the fluid eqgs.(2.1,2.2) and eq.(3.14) it follows that

: 2

|2 no

2a
i
-2y

e

(5) <pfi>. = <p(fx-Xy

He W

g

- <pri> -Xi - <f1V-pu>

. ——————— - <
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201 5 noi
(6) <QUfi> = —3 <pu(|x-Xi| - T)fi>
i

- <pqui>°Xi - <fiV‘puu> + <fi(pg+V-o)>

Clearly, eqs.(3,4,5,6) are incomplete, even if the mass and
momentum densities were known; there are only 2N relations for
the time derivatives of 3N particle attributes. The remaining

N equations can be obtalned by differentiating the estimates of
oi(t) that will be given in §7, or eqs. (3,4,5,6) can be iterated

with éi = 0 in the leading approximation.

Some estimates of the relative importance of various terms
in egs.(5,6) can be made as follows: Let it be supposed that the

Taylor series of the mass and momentum densities were known, i.e.

= . 1 .
(7) p = py+(x=X;) (Vo) + 5(x-X ) (x=Xy):(VVp), +

- (Vou 1 :
(8) pu = (pu)i+(x-Xi) (.Vou)i + S(x=X) (x=Xy) 1 (VUpu)y +...
where the subscripted quantities are evaluated at x = X,. The

i

th of egs.(5,6),

th

substitution of the i Taylor series in the 1

an integration by parts of the matrix elements that contain Vfi,
and the results for normal distributions,*

no2

2 _ i

(9) <|x-Xi| £,> = ==

See Sec. 6, Matrix elements. !

—~p—— - - -~ — - e -
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2
4 _ ¢, n° 4
(10) <Ix=xy17°fy> = (5 + )oy

give the results,

(11) <pf>" = (3 0,0, (80) +(V0), X, =(V"pu),) (140(02))
(12) <puf,>’ = (% Oic;i(ADu)i+(Vpu)i°).(i-(V'ouu)i

+0,8,+(7°0),) (1+0(0))).

The coefficlients of the relative rates of change (oi/oi) are of
the order, O(oi), and thus as the number of particles per unit
volume is increased, the error introduced by neglecting those

terms of eqs.(11,12) vanishes as
(13) o2 = o((v/M™) 0

In the same limit, uy approaches Xi as N/V becomes large, and

the major contributions to the particle dynamics are:

<f,f.>) + pi(V'u)i > 0

(14) (Zm 155

J

(15) (ijkj<fifj>). + (pu)i(v'u)1 ¥ opyEy * (V'c)i

where, once again, the subscripts on the fields and their gradients

indicate evaluation at x = Xi(t).

e ——




5. Cells

From the results of the previous section it can be seen that
the least information about the fluid mass and momentum densities
that 1s needed to complete the particle dynamics approximately
includes the values at x = Xi’ oy and (pu)i, the first derivatives,
(Vp)1 and (Vpu)i, for the evaluation of (V-u)i, and the second
derivatives, (VVo)i and (VVpu)i, for the evaluation of (V-o)i.

For that purpose then, cells are introduced to provide local

polynomia approximations where
l -
(1) P~ py + (x=Xy)(Up)y + S(x=Xy)(x=X;):(VVp)y
~ . 1., _ .
(2) pu (pu)i+(x-Xi) (Vpu)i + 2(x Xi)(x Xi).(VVpu)1

The subscripted quantities in egs.(1,2) are not the fields and
thelr derivatives evaluated at x = Xi’ as in the previous section;
rather, they are the coefficlents of quadratic approximations of
mass and momentum density flelds that would be obtained if the
system of particles were treated, after the manner of the kinetic
theory of gases, 1n a continuum approximation. The process is

the reverse of kinetic theory, however, since it is the particle
interactions that are unknown here, and the mass and momentum
densities are to be found in order to adjust the particle inter-
actions to suit the thermodynamic properties of the fluid at hand.

The local quadratic approximations for the mass and momentum

densities are determined by minimization of the blased r.m.s. error,
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(3) E, = %; <Fy[(py+(x-X;)* (Vo) + %(x-xi)(x-xi):(VVp)i-ZmeJ)2+

+ —i—g ((pu) +(x=X;) - (Vou) + %(x_xi)(x-xi):(VVou)i
: 2..1/2
- ijxjfj) 1>

where Fi(x,t) is a localized weight function that 1s normalized,

(4) <F;> =1,

located at Xi(t),
(5) Xi(t) = <XFi> s

and has an effective radius,

F >1/2.

|1°F,

(6) Ry(t) = <|x-X,
Again, for the ease with which matrix elements can be
evaluated explicitly, the weight functions are taken to be the

normal distributions,

2,.2
-lx—XiI /13

1
e

(nzi)“ 2

(7) Fi(xst) =

where n 1is the number of space dimenslons and
(8) ,6) = JZR (6
i n 1 :

This time, the quantities that enter in the conditions to

minimize E, are the subscripted field quantities and Zi; the

i
conditions are:

(9) py *+ % <(x—Xi)(x—Xi)Fi>:(VVp)i = ZmJ<FifJ> .




(10)
(11)
(12)

(13)

(14)

and

(15)

where

(16)

already

derived.

In egs.(9 to 14) the terms containing odd moments of Fi have

that follow from the choice of normal distributions will be

tion, eq.(15) which governs the choice of cell radii to minimize

the error of the approximation, implies the inappropriate result,

Al5
1 . = .
(pu)i + 5 <(x—Xi)(x-Xi)Fi>.(VVpu)i EijJ<F1fJ>

<(x=-X,)(x=X,)F.,>"(Vp), = Im,<(x-X,)F
i i’71 i i

J 1fy>

<(x—Xi)(x—Xi)Fi>‘(Vpu)i = ijij<(x—Xi)Fifj>

<(x—X1)(x—Xi)Fi>o + %—<(X-Xi)(x—xi)(X-Xi)(X-Xi)F1>:(VVo)i

i

= Im < (x-X,) (x=X,)F

3 174>

<(x-Xi)(x~Xi)Fi>(Du)i + %<(X—Xi)(x—Xi)(x—Xi)(x-Xi)Fi>:(VVpu)i

= Emjij<(x-xi)(x—X1)Fifj>

<in[(oi+(x—xi)'(Vp)i+ %(X-Xi)(x—xi):(VVp)i—Emjfj)2 +
+ 15 ((pu) {+(x=X; ) (Vou) + %(X—Xi)(x-xi):(VVpu)i
U*

. 5 _
- ZmJXjfi) 1> =0

¥y 2
z oz 3
i i Zi

F

"

(Ix-X4

been dropped; in the next section, further simplifications

The final condi-
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Z; = 0. Accordingly, it will be dropped, along with the corre-
sponding condition of eq.(3.13), and other estimates of both oy

and Zi will be given in the section on particle and cell radii.

Given the quadratic approximations for the mass and momentum

densities, the corresponding fluid velocity is

(17) u = ui+(X—Xi)'(Vu)i + %(X—Xi)(x-xi):(VVu)i + 0(|x—Xi|3)

where
(18) u; = (oujy/oy

i (19)  (Vuw)y = ((Vpu); - uy(Vp),)/py

and
(20)  (VVu),; = ((VVpu) -uy (V0p), =(Vu) (Vo) -(Vp)  (Vu) ) /0, -
The thermodynamic quantities that appear 1n V:'o are
(21)  p ~ p(py)+p' (py) (x=X;)*(Vp), +

+ 3(x=X;) (x=X,) 1 (5" (p4) (V90) 4 45" (0 ) (V0), (Vo ) ;)
and

(22)  w ~ ulpy) + ﬂ'(pi)(x—Xi)'(Vp)i +

+ 3(x-X) (x=Xp): (" (0 ) (V90 " (p, ) (Tp) 4 (V0) .
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6. Matrix elements

The choice of the normal distributions,

2,2
1 - x-X, | /oy
(1) f, = e
i ( 2\n/2
"oy )
2 ,.2
) F 1 - | x=X4 | /x5
= B ———— e ’
i ("zi)n/2

leads to numerocus simplifications of the several matrix elements
that have been introduced. Generally speaking, the simplification

of the tensorial character of the matrix elements is a consequence
2
l

of the choice of functions of |x-X and the relative ease with

s

i
which they can be evaluated 1s a consequence of the specific choice.

Consider first the right-hand side of eqs.(5.9 to 5.14):

The integral <F fj> is of the same form as

i
2, 2 2, 2
) 1 -1x-X;1%/0} —Ix—Xj| /0J
(3) <fifj> = 5575 J e e dx
(m cicj)

and the integral <Fifjfk> that will appear in the next section.
The integral of the product of any number of normal distributions

can be evaluated by introducing the 'center of mass',
Xi‘
(4) X = (& —5)/2

The exponent in the integrand is then

' | x-X, | | X=X, | (X-X,)
(5) £ —s— = [x=X|° 0 L4 g A sax-n)r —2-
%1 91 1 1

The last term vanishes by the cholce of X, the second term gives

the dependence on the coordinates Xi’ and the integral of the first
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term gives the normalization. The result for the product of
two can be rearranged to give eq.(3.7) and
2 2,2
-Ixi-le /(Zi+0%)

- 1 J
(6) <F,f.,> = e
1 (n(3 wj))“/2

Likewise the result for the product of three normal distributions

can be rearranged in the form

1
(7 <P.f.f > =
i“i°k 2,.2,.2, .2 n/2
(m (Zi(oj+ck)+°j k))
2 2, .2 2 2
_(z | x -xkl +03 I x —xil +ok|xj-xi| ..
E (o +0 )+c2 2
e J

The rearrangement of the general result is somewhat more tedious
than the direct evaluation of eq.(7) by completion of the square
in the exponent.

Next, in order of appearance, is

2
)
(8)  <(x-X)F,f,> = §l <Fifj>xi
3
= =, 2 (Xj-xi) <FifJ> R
Lyt %
and then
72
(9) <(X-Xi)(x—X1)FifJ> = 51 (<(x-X1)FifJ>Xi + I<Fifj>)
( zg ( )
= (——n—= (X,=X,)(X,-X,) +
(s+05)® 9 I

2 2
r,0
+__1__L_I)(Ff>
2, 2 17
2(Zi+oj)
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where I 1is the unit dyad (equal 613 in cartesian tensor notation).

On the left-hand sides of eqs.(5.9 to 5.14) the matrix

elements are:

2
T
(10)  <(x-X,)(x-X,)F;> = —% T

and

(11)  <(x=X,) (x-X,) (x-X, ) (x-X;)F,> = } zgs

where S is the symmetric sum of outer products of unit dyads

that has the cartesian tensor representation,

(12) Sijkl = Gijdkl + Gikdjl + Giléjk .

The results (10,11,12) follow by the substitutions of (x-Xi) and

(x—Xi)(x-Xi)(x-Xi) for G(x) 1n the identity,

2 2
Ty Ly
(13) <(X—xi)F1G> = T <VF1G> = —2 <FiVG>

Contractions of (10,11,12) then give the results (4.9,4.10).

This completes the evaluation of matrix elements, except for
moments of <Fifjfk> that can be evaluated after the manner employed
for eqs.(8,9). With the simplification that follows from the

choice of normal distributions, eqs.(5.9-5.14) now are:

(1)  p, + % Zi(Ap)i = Imy <F,f,>
X

(15) (Vp)i = 2%Zm <F,f.>

_Xi
J 2,2 173
Zi+oJ
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1 .2 =
(16)  pyT + F I5((Ap),T42(VVp),) =
2 2
To(X,-X,)(X,=-X,) o,1
= 2ZmJ( 1 2J 212 J 17, 32 5 ) <F1fj>
(zi+oj) 2(Ei+od)

From eq.(14) and the trace of eq.(16) it follows that

) ) 4 mJ IXJ—Xi,Z n
(17 (Ap), = 4% ( - 3) <F,f,>
1 7.2 V33 2 11y
Ei+oJ 21+oJ
(18) tm, (1 Zi (Ix —Xi|2 1)) <F,f,>
Py =ty = 55 37> -3 13
Zi+oJ Zi+oJ

The corresponding relations between coefficients for pu are

identical except that mj is everywhere replaced by mJXJ.

- . — e —— -
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7. Particle and cell radil

At the end of §4 it was mentioned that the attempt to minimize
the unblased error by cholce of o's leads to a nonlocalized theory
in which the 'particle' radii are large. The result can be seen
by considering the 1-dimensional, uniform, periodic case where
p=l, =» < x < o, the particles are equally spaced at Xi = i with

equal masses my = m, and oi = 0. Then

(1) E® = <(1-mIf,)%>

and the relation between m and o is
(2) <f‘>=l=mE<fif>=—_:_— Z e

From equations (1,2) it follows (as in the derivation of Bessel's

inequality for orthogonal functions) that

(3) E° = <1> - 2m <> + m° LI <ff,>

1}

2
<1> = m Z£<fif3>

<]l-m>

Since the particles are equally spaced the error per particle is

oo

l-m=1- V21 o/ L e

- 00

2 —k2/2o2

(4) e

1]

Figure 1 is a graph of e2 for 0 < 0 < 1, showling its decline to
zero as ¢ » » : the notable feature is the rapid approach of e2 to
negligibly small values. A similar phenomenon takes place in two

and three dimensions.
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Given that o's will be relatively small, the next question
is the truncation error assoclated with the approximate evaluation

of m's from

(5) <pf,> = L
17 Ty

<fifj>

where the sum is over j=1i and the N nearest neighbors of the ith
particle. In the uniform periodic case the m's and o's are equal,
p is 1, and the particles are at the integers 1n one dimension,

in a hexagonal lattice in two, and in one of the close-packed

lattices 1in three. In any case

(6)

[
1]

I <f f,>
mN(o) I ofy> >
(7) EC = <1> - 2m. I<f.> + mo T L <f,f,>
N o1 N oo 1°d
= <1> - I m, 45 I m> <f f.>
N N o j°?

oo o >N

and the error per particle is

(8) el = Ty (L-my Z<fOf,>)

>N .
where T is the volume per particle in the n-dimensional, close
packed lattice, i.e.
(9) =4, f% a®, L a3  ror n=1,2,3

V2

whe;e d is the separation of nearest neighbors. Figures 2,3 and
4 are graphs of e2 for truncations that include first, second and
third neighbors, for various ranges of o. The separation of nearest
neighbors 1is set equal to one in all cases, and the three-dimensional,

close-packed lattice is face-centered cubic.
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A different measure of the accuracy of the truncated
approximations is given in Figures 5, 6 and 7, which are graphs
of Tn—MN. The value of o at which MN =T, is the one for which
mass is conserved, 1l.e. <p> = ij. It should be noted, however,
that the value of o at which mass is conserved 1is systematically
less than that where e2 is minimized. By direct calculation, the
values of o for mass conservation with the nearest two, six and
twelve neighbors included are:

o]

(10) —% ~ 0.572, 0.498, 0.444 for n=1,2,3.

The corresponding errors per unit volume are:
2

(11) — d" = 0.000311, 0.00887, 0.0258.
n

0]

In the case where p is not constant and the particles are
not in a periodic array, a simple estimate of oi(t) is equation (10)

with

(12) d, (t) - <§ IXJ—XiI/N

where the sum is over nearest neighbors. Many other ways to
estimate oy can be found, however, and the adoption of (12) may
be considered as provisional. 1In any case, as the number of
particles per unit volume becomes large, o, * 0 along with

di,,and if p is differentiable, then equation (11) provides an

estimate of a local relative error

(p=Ffm,f )2
(13) <_—-%_J—_ >i/<1>1
p
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where <1>1 is the volume of a neighborhood of X1 that has a
dlameter that 1is large, compared to di’ and is small, compared
to the scale length p/|Vp].

There remains now the question of the error in the cells.
The uniform, periodic case gives rise to double sums that are

relatively easy to evaluate in one dimension, rather more

difficult in two and three. The cell error is

2 _ 2
(14) Ej = <FO(pN—meJ) >
where
(15) I<F_f m 'IXJ|2/(22+°2)
Py = M < > = Le
N <N 0°J (ﬂ(z2+02))ﬁ7§ <N

and again the sum is over the N nearest neighbors. From (14, 15)

it follows that

2 _ 2 .
(16) E,=m 2 £<Fofifj> - pN(pN.zm >§ <Fofj>),

and in the one Jimensional case

(17) <Ffyf)> = 1 e—(i-j)2/202 e-(1+J)2/2(222+02).
mov2L +a

Figures 8 and 9 are graphs of Eg(z) for various truncated

approximations. The two left-arguments of the function CLERR set

the number of ﬁeighbors retained in the particle and cell trunca-

tidns, respectively. The particle mass is one in all cases, and

o 1s set equal to the value that conserves mass in the truncated

particle approximation. The appearance of phenomenal accuracy

as I » 0 is to be disregarded since it refers to approximate
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calculation of density within the particle at X=0. Figure 8

approximates the untruncated cell over the range 0 < ¢ < 1, and
indicates that cell error is limited by the error in the particle
approximation. Figure 9 shows the effect of truncation of the
cell approximation.

The final figure shows l—pN (with m=1) in various approxima-
tions. The indication is that mass conservation provides a
reasonable estimate of a value of I for which truncation error
is relatively small and the density is not the density within a

particle. 1In the case where the number of neighbors retained

is the same for particles and cells, the estimate is
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Difference Analogs of Hamiltonian Systems

Frederic Bisshopp
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912

Numerical integration of Hamiltonian systems brings forth
the question of whether or not the difference analogs have an
energy invariant that correspoﬁds to the energy integral of
the differential equations. Several difference analogs of
the harmonic oscillator will be examined in that light, and
then generalizations will be given. »

The differential equations,

X =p, p= —-X, (1)
have the energy integral,

E = -]i'(pz + Xz). (2)

Action-angle variables for the harmonic oscillator are J=271E

and 6, with

x = V2E cos(6-6_), p = - V2E sin(6-6) (3)
and

6 =1, 3 = 0. (4)

Even the simplest difference analog,

8, =kh, g =93, (5)

k k o

gives exact values of the solution. The problem of interest

T ————— AT, o ¢ ¥
— — - - > -




(1).

Explicit difference analog:

when t « t+h.

The eigenvalues are 1 * ih and their magnitude

portraits spiral outward.

Implicit difference analog:

1

X +1 MPry

= xk,

defines the iteration,

(2) 2 (=

The eigenvalues are (liih)/(1+h2) and their magnitude is

Pr+1

h
1

Central difference analog:

Xk+1

+

Pr+1

hp

hx

k+1

k+1

is Vl+h2. Thus the explicit analog is unstable; its phase-

thx, 1 = Py (8) ‘
X' )
p . (9)

l//l+h2. The implicit analog is stable, but unsatisfactory

since its phase-portraits spiral inward. w

N N
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here has to do with difference analogs of the primitive equations

Xg+1 = ¥xtPPyr Pyyy = Pemhxy (6)
defines the iteration,
x\.* 1l h X
; (7
p[ \-h 1 2
where the reversed arrow indicates new values that are assigned l

k
(10)
hx




The attractiveness of the central difference analog is diminished

S e — o> -

defines the iteration,

% 1 1-%—}12 h %

-
1.2
p l1+zh \‘-h 1 - 1,2 p

The matrix that transforms (x,p)T is a rotation, so

(11)

|

E = %(pi+xi) is an energy invariant of the central difference
analog. The only source of truncation error is in the phase

of the solution,
X, = Y2E cos(kr—eo), Py = -v/2E 51n(kT-eo), (12)

where
tan T = h/(1 ~ 5 h?). (13)

For the exact solution, T would be h, as in equations (3,5);
from equation (13)

t=h-1hn’+om% , In| < 2. (14)
because it is an implicit scheme.

Leap-frog method:

Xpe1 = ¥g-172hPys Pyyy = Pyoym2hxy (15)
is a three~level, explicit, central difference scheme. It has
solutions of the form

X, = XA, Py = P A (16)

where
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r2-1 2h)
=0 . (17)
-2ha Az—l
The eigenvalues are solutions of Az = 1—2h212ih 1-h and their

magnitude is 1 for |h| < 1. There is a well-behaved mode,

= - = - . S -
X, = V2E cos(kt 8) ¢ Py = -V2E 7= sin(kt-8.), (18)

and an ill-behaved mode,

x, = A(-1)¥cos (k1-6 ), Py = A oo (-1 ¥ sin(k-6_), (19)
where

tan 2t = 2h y1-h°/(1-2n%). (20)
The phase error follows from

t=h+gh’+om®, |n <1//7, (21)

.and, if the ill-behaved mode is suppressed, the energy invariant
of the leap-~frog .method is a close approximation of the energy

integral since h/sin T = 1+0(h4).

Fligffldp integration:

The explicit, two-level scheme,

X1 = ¥thepr Pyythxy,, = py (22)
defines the iteration, '
X 1 h X
- . (23)
o -h 1-n% J\ p
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The eigenvalues are (2-hztthz:;7)/2, and their magnitude is
1l for |h| < 2. The matrix that transforms (x,p)T clearly is
not a rotation, but an energy invariant can be found by
multiplying the second of equations (22) by (pk+1+pk)/2.

The result,

_ 1,2 2
E = S(p+hpyx, +x,)

: 2
=3+ Heaxpts 1 -De (24)

indicates that the solution lies on an ellipse at the angle

eo—kt, where
2 2
tan t = hy4-h“/(2-h°) (25)
The phase error follows from

T=h+3rh>+ 0>, |n| < /2 (26)

By comparison, the flip-flop integration is best at
representing the phase of the oscillation, worst at representing
the energy integral. Nevertheless, it has an energy invariant,
and for the action-angle variables the relative errors are h2/4
and h2/24, respectively, when (xo,po) = (xo,O) or (O,po). By
the more familiar reckoning, the relative error in the waveform
is of 0(h).

The principal advantages of the flip-flop integration are
that it is two-level and explicit, and it can easily be generalized

for some Hamiltonian systems. Consider first

e —
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X = p, p = f (x) (27)
and the flip-flop integration

X + hf (x (28)

k+1 = Xk*hPyrs  Pryy = Py k+1) -

With one degree of freedom, f(x) is derivable from the potential
X
Vix) = - f f(z)dz, (29)

and, by the trapezoid rule,

1
V)=V = = FUE O ) HE O Gy =%y )

ot

+ Iy E7(E) (xp,1~%,) (30)
where £ lies in [xk,xk+1]. We define
E, =3 bp - 3 hp £(x) + Vix), (31)
and it follows from equations (28,30) that
1 3.3

E 1 Ep = T3 hoppf"(E). (32)

It cannot be seen by this argument whether or not the flip-flop

integration has an energy invariant, but there is a near
invariant that confines phase portraits of solutions of the
difference equations to a neighborhood of the energy integral,
with relative errors of 0(h) for times as long as 0(l/h). A
possible drift of O(hz) for times of 0(l) is more or less
consistent with O(hz) errors in action-angle variables, and
again there are relative errors of 0(h) in the waveform of an

oscillation. It can be expected that equation (32) overestimates




B7

the drift per cycle of a nonlinear oscillation.

Now let us consider Hamiltonian systems defined by

H(x,p) = T(p)+V(x), where x and p are vectors. Let

g, = VT A A (33)

P=Py k- =Xy
From the Taylor series of T and V, expanded about (xk,pk) and

(xk+1'pk+1)’ it follows that

1 T
H(Xy 11 rPry1) -HOG 0 Py) = F(gptgy 9) 7 (Pyyy-Py)
(34)

1 T 3 3
= ZUE e 1) (X)) 0 R =% 17 [y -py 1)

where |£|2 = £T¢. It follows easily that there is a near

invariant (to 0(h3)) for either of the flip-flop integrations,

b 4 +hf

K+l = XxMhOg ¢ Pyyy = Pethiygg.
B 1 (35)
B, = T(p )+V(x,) - 5 hg, f,,
or
Pr+1 = Pxthips  Xpyy = Xpthapy, o
Ek = T(pk)+V(Xk) + 3 hgkfk.
The argument fails for the general H(x,p).
As an example, the cubic nonlinear oscillator,
% + x3 =0, (37)

has been simulated by flip-flop integration,
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[1] X « x + hp

[2] p<«p- hx’

31 -»1

The results, as illustrated in the accompanying figure, suggest

that although the near invariant is not strictly conserved
there may be no systematic drift after all. The phase portrait
of approximately twenty cycles of the oscillation appears to be
confined to a band (probable width of O(hz)) centered about the
near invariant. The value of h in the computation is 0.5 —
for most, but not all values of h greater than a number near

0.75, the algorithm is unstable.

Figure caption:

Phase portrait, x vs. x for 0

I

t <125 in steps of 0.5.

Initial data: x(0) =1, x(0) = 0.
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Appendix C: Flow in a channel by biased differences

The flow that 1s simulated here occuplies a rectangle with
nodal coordinates

Y

I

MB, MM, ..., 2,1 (bottom to top)
X

1, 2, ..., NN, NB (left to right)

The sets of indices that are used to define central nodes and
their neighbors are

Nl = 1, s e ey NN_]-
NO =2, ..., NN
N3 = 3, oo 0oy NB

My =1, ..., MM-1

MO = 2, ..., MM
M4 = 3, ..., MB

Thus the correspondence between index-pairs and nodes is

Central ——— (MO,NO)
Western w—e—  (MO,N1)
Northern - —w—=  (M2,NO)
Eastern ~+—-  (MO,N3)

Southern - —=—— (M4,NO)

The input variable, u, and output, z, are 5 by MB by NB arrays
of values of Uy, Uy, fl’ f? and rat times t and t+k. The parameter
Nu is actually vk/h2 since length and tlme are measured 1n units of
h and k to eliminate unnecessary multiplications.

The first part of the program carries out the forward integra-
tion of i = u as described in Section 3 of this report. The
second and third parts are decoupled from one another in this
early version of the method because only the hydrostatilc
component of the pressure boundary condltions has been included.

T s ey - . A -




ce

. Thus the boundary conditions are:

Western boundary (inflow)

Mo = Ty = hﬂ1<£c) (hydrostatic)

o
1]

u, = (constant, 0) (slug flow)

Eastern boundary (outflow)

constant

m
c

(fully developed)
4 = (u1w5o)

Northern boundary (rigid)

m

c s
(0,0) (no slip)

T+ hf2(10) (hydrostatic)

u
—c
Southern boundary (center line)

m,= T - hfg(zc) (hydrostatic)

u, = (uln,o) (symmetric)

The last part of the program was added to correct for global
truncatlon error. At each station along the xl-axis uy is
renormallzed to preserve the constant total mass flux.

The initial condition was slug flow everywhere but at the rigid
boundary of an 11 by 31 node grid. The inlitial value of 0,
and the inflow velocity were set at 14/2 to insure that no
bias lines would fall outside local skeletons, and the body
force was set to zero. Nu (= Vk/hg) was set at 0.2, and after
15 time steps (CPU time, 12 sec.) the flow was almost at a steady
state. Filgure 1 shows the profiles of uy at the horizontal
stations 1, 3, 5, 7 and 9. The numbers above and below each graph
are the maximum and minimum values of u - In figure 2 the same
profiles are shown after 10 more time steps. In figures 3 - 5
the value Uy = 0 at the rigid boundary is not included and the
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scale 1s expanded to show detalled structure of the velocity
profiles. The progression of the point of maximum velocity
from edge to center as one moves downstream is consistent with
results of other numerical simulations and with results of
boundary layer theory.
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Appendix D: Thermal instability

The problem that was used to check the blased difference
algorithm for thermal convection was the Bénard problem. Thermal
instability of a horizontal layer of a fluid, heated from below,
1s governed by the equations

X=u

M A

u = -yg +ag2(T - <T>) +vau
Y'u=20

é = kAT

where

T =L +gz,
Po

a is the coefflclent of thermal expansion, g is the acceleration
of gravity, v 1s the kilnematlc viscosity, « 1s the thermal
diffusivity, and <T> is the mean temperature. The boundary
conditions that were used are

u=0 all boundaries
T = T0 and Tl lower and upper boundaries
%'rll-' =0 sidewalls

Two- and three-dimensional cases were implemented. For
simplicity we will discuss the two-dimenslional case; the three-
dimensional algorithm is ldentical in form. Let the subscripts
1, 2 denote the components of x = (y,z), and let the subscripts
¢, n, s, u, d denote central, northern, southern, upward, and
downward nodes in a rectangular grid. In the APL function TW1C
the 4 by M by N dimensional array U contains nodal values of
u, T andnm. North is to the right and up is up in the arrays;
the correspondence between index palrs and directions 1s
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Ué <—-+-U[;MO;N0]

U, <> U[;MO;N1] N1 = NO-1
U, <> U[;M2;NO] M2 = MO-1
U, <> U[;MO;N3] N3 = N1+2
Uy <> U[;Ml4;NO) M4k = M2+2

The first part of the algorithm takes input values u, T, Tat
time t (say); the parameters P =v, k, ag are not used until
later. The forward integration of i = u with time increment
k gives ’

X, =X

Xy + ku(x,)

C

where Zc Is the position at time t of the bias line that passes
through x , at time t+k, and u still refers to time t. With
linear interpolation for g(?c) the displacement

is given by the linear equations

(I + kM)§ = - ku,

where the space increment 1s h and
My = %((uln- ulc)(ulc'>o) + (ulc_ u1S)<u1c <0))
My, = %((ulu- up I (uge >0) + (uy = uy4)(uy, <0))
Moy = %((uQn— Mo Uy 7 0) + (upe upg){uye <0))
Moo = %((UEu— Upe ) (Uupy >0) + (upe= upg){up, <0))

Note, the parenthetic expressions, (uic <0) and (uic>-0) which
have logical values O or 1, are used to compute arrays of
coefficients of M in the APL function.

o = m —— m ——y e —— - et ——— e




Glven arrays of § at the central nodes, the initial data for
veloclity and temperature is

where the vector m has components
1
m = H((Tn - Tc)(ulc >0) + ('1'c - Ts)(ulc <0))

m, = %((’1‘u - Tc)(u2c >0) + (Tc - Td)(uzc <0)).

At thils polint the approximation

S = @ -m_ +u. -
(Tw), = 30, - g + Uy, - Upy)

1s evaluated for use in the pressure equatilon.
The backward integratlion of the temperature equation defines

the iteration that initiates the second part of the algorithm

- (7 4+ kK bk

T, (Tc + h2,('1‘n + T + T, + Td))/(l + N ) .

Substitution of V-u = O in the divergence of the backward time
integration of the momentum equation gives the pressure equation —-
also iterated

2
Y oghem _ N
Te © “(Wn gt Ty Py Y2 (Tu Td) k (2'2)0) )

The momentum equations,

I e k. _ vk 4yk
W = e +gplng=m ) + he(“1n+ up gt Uyt Uy 40 1/(0 e )
- k
u,, = [u,, + z5lmg- m,) + k(T -<T>)
vk
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complete the algorithm at internal nodes.

The temperature is fixed (unchanged) at the top and bottom
boundaries, T, = T, at the south boundary and T = T, at
the north. Both components of u are zero on all boundaries,
and the pressure boundary conditions are

Top:
m = mat degh(T + T.- 2<5) + Dy + (3. .- u..)
c d ¢’ “d h 24" Tk‘'“2d ‘“ad
Bottom:
m.o=m - kgh(T + T - 2<r5) - 2y -2 (5 - u. )
c u ¢’ Tu- h “2u Tk‘'2u “2u
North:
- 2v h —
Te = Tg *HUs taR(vyg - W)
South:

_ -2y, _h .= _
Te = ™n h “1ln Hf(uln uln)'

The small terms of {%{E - u) were not included in the versions
of the algorithm that were used here.

Finally, the last part of the algorithm renormalizes horizontal
and vertical components of velocity to account for v.u = 0
globally, and sets the undetermined constant in the pressure
field at a convenient value.

The onset of thermal instability in a fluld layer of depth
d occurs at sufficiently high values of the Rayleigh number

R - QgATd®
KV

where AT 1s temperature at bottom mlnus temperature at top.

For an infinite layer bounded above and below by rigld boundaries
the critical Rayleigh number is 1708, and for R greater than

that convection appears. The fluid motion 1s in vortices
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with alternating clockwise and counterclockwise circulation
(rolls), and the width of a vortex 1is very slightly greater
than its depth, 4.

In the simulations we have run, time and distance are
measured iIn units of k and h, 1.e. At = Ax = 1. Thus an
M by N array of nodes has a width (N-1) and a depth (M-1),
and the Raylelgh number is

agAT(M - 1)3

R = KV

For the two-dimenslonal cases the grid 1s 11 by 30, k = v = AT =
and ag 1s set at 2 or % to give Rayleigh numbers, 2000 or 4000.
Runs were started with a uniform temperature gradient and
small, randomly chosen velocity perturbation. Features of the
resulting steady states that developed are shown in Figures 1- 6.

In figures 1 - 3, R 1s 2000 and there are two weak primary
cells and a very weak secondary cell. This is 1n accord with
stabillity theory which predicts that nelther two nor three cells
can flll a container with aspect ratio 3:1 at slightly super-
critical Rayleigh numbers. As far as we know, there 1s no
thecretical work that has predicted that the resolution of that
would be a secondary cell that is driven by the primary motion
rather than by buoyancy.

In figures 4 - 6, R is 4000 and no secondary cell is needed to
f111 the contalner. This, incldentally, 1s about the limit of
what can be simulated with At = Ax. When a component of uk/h
exceeds one, the blas line falls outside the local skeleton,
interpolations become extrapolations, and the method beglins to
be unreliable and possibly unstable.

Finally, a three-dimensional cell was slimulated at Rayleigh
number 4000 in an 11 by 11 by 11 node container. The alignment
of the circulation with its axis on a diagonal in plan view
allows a cell that has a width that 1s slightly greater than
its height. PFigure 7 is a plan view of the contours of w at z =
accompanied by elevation views of the directlion flelds of u
and w at ¥y = 6 (below) and v and w at x = 6 (to the left ).

6
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B Altogether, bliased differences appear to be a reliable and
effieient. way to simulate thermal convectlon. CPU time on
the IBM 370/158 at Brown University is 5 seconds per time step
of the three-dimensional simulation on 1331 nodes.
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Appendix F: Interactlve generation of contour maps

The APL function CONTOUR will be described here. It takes
as input a rectangular array F of real numbers that can be
regarded as helghts above a rectangular grid of nodes in the
x-y plane. The second input, H, is one or several values for
which one wants the level lines. The output, X, is a sequence
of coordinates X,Y¥,X,¥,...,-1,-1,X,¥Y,... of points on the level
lines. A pair of entries -1,-1 within X slignals the start of a
new contour line.

As always, there 1s the decislon to be made whether the array
F represents nodal values of a function F(X,Y) or values of H
at positions in the array. CONTOUR does neither case: If F 1is
nodal values of F(X,Y) one must first take the transpose of F,
and if F is values of H above an array one must flrst reverse
the order of the rows of F. Thus

H CONTOUR & F (function)
or
H CCNTOUR © F (array)

glves results in standard position with X 1lncreasing to the right,
Y increasing upward.

~ Contour map algorithms require a check for F = H at a node of
the array because the contour can have one or more branches there
(e.g. at a saddle pcint). The interactive aspect of the function
operates when such a point 1is found, and the user 1s required to
enter a perturbed value of H. Then, at a saddle for example,

\_/
. )
~— >

=ity AV D At 4o




The function CHECK, called by CONTOUR, first checks F = H
at corners (nodes of the array); then introduces centers of
the rectangular patches where F 1s asslgned the average of the
values at corners; then checks F = H at centers. Given F # H
at any corner or center of the now triangulated array, no
intersection or branching of contour lines 1s possible, and
the only decision left is whether a contour is closed and lies
within the array or open and termlnates at an edge.

The function NODES finds nodes on the contour by linear
interpolation of values of F at corners and centers. The
output of NODES has four rows and as many columns as the
number of nodes on the contour. The first two rows are encoded
addresses of line segments that have a node, and the last two
rows are coordinates of the nodes. Flnally, the function SCORT

- use8 the encoded addresses to arrange the nodes in order, checks

for open or closed contours, and returns the coordinates.

The logical structure of this algorithm is much simpler than
others we have examined, and, even in APL, 1t 1s considerably
faster than its FORTRAN competitors.

.
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OCR'CONTOUR !
X«H CONTOUR FiWN3;S8:E;:W ;010
A X=X, Y, Xee. 1, 2...72,71.,..Y,X,Y
A ON CONTOURS OF H=&QF(X,Y) OR li=eF[I;J]
A CALLS VA«CHECK HV
A INDICES - WORTH,SOUTH, EAST, WEST ON eF
0ro«o
N«1+5«\(pF)[0]-1
E«l+iW+r(pF)l1]1-~1
X+"24CHECK H

OCR'CHECK!

X+~CHECK H3;2;4C

A EXATERNAL VARS F,N,S5,E,W,00I0=0

A CALLS VX+SORT YV AND VY<«NODESWV
. R CHECK AND GO - ANY NUMBER OF CONTOURS
+(1=p,H)/BGN
X+«(CHECK H[O0]),CHECK 1+H
+0
BGl :4+F-H
A CONTOUR THROUGH A CORNER
+(A/A/UCP<|2) /0K
[e'F=',(vd)," AT A CORNER - TRY H=!
H+sll
+BGN
A CONTOUR THROUGH A CENTER
01{1:ZC*-O.25X,+/Z[S;P/].Z[S;E].Z[IJ;E'].[I.S] ZLN;3¥W]
+(A/UCT<|sC)/0K2
Ce'F=',(vi)," AT A CENTER - TRY H=!
H<2[Y
+BGN
A NO CONTOUR
0K2:+(V/V/u=|+/XZ[S;W].Z[S;E‘].Z[[I;E].[i.S] ZLN;W]1)/0K3
'8N0 CONTOUR FOR H=',(¥H),' - TRY H=!
H+ 2%
+BGN
OK3 : A«SORTQNODES
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QOCR'NODES"
Y«NODES ;K3 X3V
A EXTERNAL VARS N,S,E,W.,Z2,2C,0I0=0
a ADDRESSES AND POSITIONS OF NODES
Y 4 0 poO
A WN-S NODES
NS :+(0=pK+(,(x2[N;1)2xZ2[S;1)/\(14pE)xpN)/EW
X+(6xX), X«Q((pN),1+pE)TK
YeY , Q4-"3,0,(Ve(,20H;3)(k1-Vv«(,2[5:1)[(k1),[0.5] 0O
A E-W WODES
EW:+(0=pR«(,(xZ[ ;E])2xZ[ ;#W3)/(pE)x1+pN)/SW
X<(6xX),X+Q((1+pN),pE)TK
YeY,8X-0,73,0,00.5] V#(,2[;EI)(KI-V«(,20;wW]I)LK]
A SW-C NODES
SWi+(0=pK+«((x2C)=,x2[S;W]1)/\(pE)xpN)/SE
Xe(6xX) , X+Q((pWN),pE)TK
YeY ,Q4-"2,72,V,[0.5] VeV#2xZCLKI-V+(,2[S:W1)[ K]
A SE-C NODES
SE:+(0=pK«((x2C)=,xZ[LS;E1)/\(pL)xpN)/NE
X+ (6xX),X«((pX)p 0 1)+X+Q((pN),pE)TK
YeY , Q4-"2,2,V,[0.5]-V«V2x2CLKI-V«(,20(S;E])[K]
A NE-C NODES
NE:»(0=pK+((x2C)=2,xLIN;E]J)/\(pE)xpN)/NW
X«(6xX),X+1+Q((p¥N),pE)TK
Y«Y,QX+72,72,V,[0.5] VeV:2xZCLK]-V«(,2[N;E])LK]
A WW-C NODES
NW i+ 0=pRe((xZC)=,xZ[N:;W])/\(pE)xpl)/0
X+(6xX),X«((pX)p 1 0)+X+&((pN),pE)TK
Y«Y,QXk+72,2,V,[0.5]-V«V#2x2CLK]-V«(,20CN;¥W1)[K]




F5

R UCrR'SORT?
X+SORY YNy LiM;K;I
A EXPERNAL VAR 010=0
X+10
BGUN:M+1i+(pY)L 0]
A START WITH ZERO AND ONE OR TWO HEIGHBORS
NeT100,(V/(+/|ILLp0;]1-T+«Y[;0,1])e.= 2 3)/M
A CHECK FOR ENDPOINT OR CLOSED COLNTO 'R
B:i»(0=pXK+(K=N[1])/R+(v/(+/)T[LoN[0];]-T)e.= 2 3)/M)/C
+(K#"14N«K,N)/B
+END
C:N«bii
A FIND OFTHER ENDPOINT
Dile(Ke(K=zNL1])/Ke(Vv/(+/ |1 ILLpNLO0];]-T)o,= 2 3)/M),N
+(0=pK)/D
END:X+X,(,Y(N;3,2]),2p 1
+(LspiN)/0
YeY[(~Meil) /M3 ]
+BGN
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